
The Enhanced Evolutionary Tabu Search and Its
Application to the Quadratic Assignment Problem

John F McLoughlin III
Penn State Great Valley

30 East Swedesford Road
Malvern, PA 19355, USA

1-610-531-3064

john.mcloughlin@lmco.com

Walter Cedeño
Johnson & Johnson Pharmaceutical R&D

665 Stockton Drive
Exton, PA 19341 USA

1-610-458-5264

wcedeno@acm.org

ABSTRACT
We describe the Enhanced Evolutionary Tabu Search (EE-TS)
local search technique. The EE-TS metaheuristic technique
combines Reactive Tabu Search with evolutionary computing
elements proven to work well in multimodal search spaces. An
initial set of solutions is generated using a stochastic heuristic
operator based on Restricted Candidate List. Reactive Tabu
Search is augmented with selection and recombination operators
that preserve common traits between solutions while maintaining
a diverse set of good solutions. EE-TS performance is applied to
the Quadratic Assignment Problem using problem instances from
the QAPLIB. The results show that EE-TS compares favorably
against other known techniques. In most cases, EE-TS was able to
find the known optimal solutions in fewer iterations. We conclude
by describing the main benefits and limitations of EE-TS.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – heuristics.

G.1.6 [Mathematics of Computing]: Optimization – constrained
optimization.

General Terms
Algorithms, Performance.

Keywords
Tabu Search, Quadratic Assignment Problem, Optimization,
Evolutionary Algorithms, Genetic Algorithms, Soft Computing.

1. INTRODUCTION
This work introduces the Enhanced Evolutionary Tabu

Search (EE-TS), a metaheuristic technique that combines Reactive
Tabu Search (RE-TS) [1] with evolutionary computing elements
that have proven to work well in multimodal search spaces. EE-
TS is a metaheuristic search technique that can be classified as a

stochastic method, one of many soft computing techniques [2]. In
this paper we describe the background and design of EE-TS and
its performance when applied to the Quadratic Assignment
Problem (QAP) [3].

EE-TS is initialized with a set of solutions generated using a
stochastic heuristic operator based on Restricted Candidate List
(RCL) [4]. RE-TS is augmented with selection and recombination
operators that preserve common traits between solutions while
maintaining a diverse set of good solutions. The performance of
EE-TS is evaluated using problem instances from the QAP
Library (QAPLIB) [5].

The QAP is NP-hard [6] and many practical instances come
from areas such as design and resource allocation. The QAP is a
non-trivial combinatorial optimization problem for even the small
problem sizes. It deals with identifying optimal assignments of
facilities to locations such that the cost of the resulting system is
minimized. The QAP has application to a wide range of situations
and domains, such as microprocessor design, machine scheduling,
and even the topographical layout of wards and services in a
hospital. Due to the complexity of problems, solutions to the QAP
are often found through the application of metaheuristic search
techniques, and the QAP has become in some ways a benchmark
by which new techniques are validated. EE-TS is shown to
compare favorably to other known techniques using a set of
problems from the QAPLIB. In most cases, EE-TS was able to
find the known optimal solutions in fewer iterations.

The next section presents a formal definition of the QAP,
including its mathematical representation. Section 3 provides a
brief overview of the tabu search. Section 4 describes the
evolutionary computing enhancements in EE-TS. Section 5
provides a detailed description of EE-TS. Section 6 describes the
environment used to test the performance of EE-TS. Section 7
presents the results for various problems in the QAPLIB. We
conclude with a discussion of the benefits, limitations, and future
enhancements of EE-TS.

2. The Quadratic Assignment Problem
The QAP is a resource allocation problem where the goal is

to discover the best cost-effective distribution of resources. Given
N facilities and N locations, assign each facility to a location such
that each location is assigned a single facility and the total
shipment cost is minimized. The total shipment cost is a function
of the distances between the locations and the shipment costs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

975

between the facilities and is represented by the formula shown in
Equation (1),

��
= =

=
N

i

N

j
jiijbaf

1 1
)()()(φφφ (1)

where aij represents the distance between locations i and j, and
bφ(i)φ(j) represents the shipment cost between the facilities assigned
to locations i and j.

Even with today’s best computers, relatively small problems
(N=25) require prohibitive amounts of time to solve to provable
optimality [7]. Consequently, metaheuristic algorithms are
commonly applied to the QAP. A summary of recent advances for
solving the QAP can be found in [7].

The problem instances used in the development and testing
of EE-TS were obtained from the QAPLIB, a library of QAP
problems and their best-known solutions. The problems are
organized into sets, with each set named after the author(s) who
developed the group of problems. Some problems were generated
randomly, while others are based on real-world data. The selected
data sets include the Taillard set [8], the Nugent, Vollman, and
Ruml set [3], and the Skorin-Kapov set [9]. Several of the
selected data sets were previously used to test RE-TS [10].

3. Tabu Search Overview
Glover introduced Tabu search (TS) in the late 80’s [11][12]

[13]. The basic idea behind TS is that adding short-term memory
to a local search improves its ability to locate optimal solutions.
Revisiting previously or recently visited solutions is discouraged,
and operations that would do so are labeled as being “tabu” or
“taboo”. Glover proposed the use of both statically- and
dynamically-sized memory structures for tracking tabu operations.
In 1991 Taillard created the Robust Tabu Search (RO-TS), which
introduced a dynamic randomly-sized short-term memory design.
Battiti and Tecchiolli developed the RE-TS [1] in 1994 which
based the dynamic size of its short-term memory on runtime
characteristics of the algorithm and which also utilized a form of
long-term memory that helped prevent searches from stagnating.
Many other Tabu Search variations have been developed that
incorporate various forms of dynamically-sized short-term
memory and long-term memory [14][15], but the RO-TS and RE-
TS remain among the most successful and popular. Other
approaches have been developed through experimentation with
features such as socialization and competition [16] or, like the
EE-TS, the integration of evolutionary operators useful for
multimodal optimization. The following concepts are common to
most (if not all) Tabu Search techniques, but their specific
implementations are somewhat flexible.

A move is an operation by which one solution transitions
into a neighboring solution. A solution’s neighborhood, N(i,k), is
the set of all solutions that can be transitioned to from the given
solution i at iteration k by applying a valid move. For the QAP, a
common move strategy consists of swapping facilities assigned to
two locations.

The Tabu List is perhaps the most influential piece of any
Tabu Search design. The basic purpose of the list is to maintain a
record of which moves are tabu during each iteration. Many
subtleties in how this task is carried out have been shown to
greatly impact the performance of Tabu Search. Usually, a move
added to the Tabu List is the reciprocal of the move last accepted

and applied to the current solution. The reciprocal is recorded to
prevent the search from “undoing” recent moves. Several
approaches exist for handling the determination of Tabu List
length, but the most common are the approaches used in the Strict
Tabu Search (S-TS) [12], the RO-TS, and the RE-TS.

In Battiti and Tecchiolli’s RE-TS application to the QAP, the
tabu list keeps track of the assignment history of each facility to
each location. If the current solution has facility F1 located at
location L1 and facility F2 located at location L2 and a move
defined as swapping the facilities at L1 and L2 is accepted, then
any move which places facility F1 back at location L1 or facility
F2 back at location L2 is tabu. Just how long such a move is
considered tabu is based on the length of the Tabu List.

The simplest Tabu Searches used a fixed-length list. Other
techniques incorporate a dynamically changing list length
throughout the course of a run. In the RO-TS, this is
accomplished by randomly choosing a new list length at set
intervals. The goal is to emphasize the exploration
(diversification) and exploitation (intensification) of the search
space. When the list length is long, it contains many tabu moves
and therefore the search will be forced into new areas and
directions—forced to explore. When the list is short, a fewer
number of moves are tabu and the search can stay focused on
solutions in a relatively small area of the search space—exploiting
the smaller area.

Battiti and Tecchiolli agreed that Taillard’s implementation
of a dynamically-changing list size was powerful, but based the
size changes in the RE-TS on dynamic characteristics of the
current run [1]. Instead of the randomness of the RO-TS, the RE-
TS determines whether the list length should be increased or
decreased by tracking the number of duplicate solutions visited
during each interval. An interval is defined as a pre-determined
number of iterations within a search. If a large number of
duplicates are visited, the list length is increased in order to force
the exploration of other areas. If few or no duplicates are
encountered, the list length is decreased to focus the search; to
exploit the current area before moving on. Tracking duplicate
visitations requires long-term memory sometimes referred to as
frequency memory. It has generally been shown that TS
techniques that include a long-term memory tend to perform
better than those that do not [15].

Strict Tabu Search (S-TS) is the most straightforward
technique. With S-TS all previously-visited solutions are tabu for
the remainder of the run. With this approach the length of the
Tabu List is always equal to the current iteration and is therefore
constantly growing.

Step 1. Create an initial solution i at random. Set i*=i and k=0.

Step 2. Set k=k+1 and generate a subset V* of solutions in N(i,k)
such that either one of the tabu conditions tr(i,m)∈Tr is
violated (r=1,...,t) or at least one of the aspiration
conditions ar(i,m)∈Ar(i,m) holds (r=1,...,a).

Step 3. Choose a best j=i⊕m in V* (with respect to objective
function f) and set i=j.

Step 4. If f(i) < f(i*) then set i*=i.

Step 5. Update tabu and apsiration conditions.

Step 6. If a stopping condition is met then stop. Else go to Step 2.

Figure 1: Tabu Search pseudo code.

976

When selecting the next move to perform, a Tabu Search
evaluates the neighborhood of the current solution and attempts to
find the best non-tabu move; “best” being determined by the
objective value of the resulting solution, should the move be
applied. Sometimes, however, it may be desirable to allow a tabu
move to be chosen. The conditions under which a tabu move
would be allowed are known as the Aspiration Criteria. The most
common aspiration criteria is to test whether or not the
implementation of the tabu move would result in the best-fit
solution yet found for the current run. This is the criteria used by
Battiti and Tecchiolli in the RE-TS. Figure 1 shows the basic
elements of TS.

During a Tabu Search run, it is possible that a single solution
will be visited multiple times. To some degree this is desirable; it
supports the concepts of exploitation and exploration. On
repeated visits of a solution, the Tabu List will most likely contain
a different set of tabu moves, and the search may travel a new
path. Problems can arise, however, depending on the length of the
Tabu List; a search can get caught in a loop and continuously
revisit the same solution. When the chain of moves involved in
the loop is longer than the length of the Tabu List, this will result
in an infinite loop and the algorithm will spend all of its time
evaluating the same solutions repeatedly, leaving large areas of
the search space unexplored.

The EE-TS incorporates many of the elements of RE-TS,
including a two-level escape mechanism to prevent such infinite
loops. This escape mechanism is based on the incorporation of
long-term memory within the RE-TS. For each solution that is
visited, a corresponding record of the solution is maintained along
with a counter. Each time a solution is revisited, the counter is
incremented. If a solution has been visited more than some
predefined number of times the first level of the escape
mechanism passes for that solution. The second level passes when
a predefined number of solutions have passed the first level.
When the second level passes, an escape occurs: the Tabu List is
emptied and a new solution is generated randomly. The revisited
solution counters are reset as well. The search effectively restarts
but maintains the current iteration count.

4. Evolutionary Computing Concepts and
Operators in EE-TS

Evolutionary Computing strategies are based on concepts
associated with the natural process of evolution [17]. Traits are
passed from parents to offspring with operators that mimic
selection and recombination. Over time, those traits that are
undesirable for survival will be weeded out of a population while
“good” traits become prevalent. This “Survival of the Fittest”
approach has been successful when applied to many complex
problems [18]. Here, we introduce concepts that have been
incorporated to some degree into the design of EE-TS. The
specific details are discussed in the next section.

Quite often, the search space for a problem will contain
multiple local optima. Such a problem is considered to be
multimodal. It is possible for an algorithm to become trapped in
one of these local optima and be unable to discover the global
optimum. Mutation and random restart are techniques used to try
to avoid this situation. Another approach is the use of a technique
that has been designed for multimodal landscapes, such as the
Multi-Niche Crowding Genetic Algorithm (MNC-GA) [19],
which naturally encourages the creation of species that converge

to multiple niches in the search space. MNC-GA is a genetic
algorithm that replaces fitness proportionate reproduction with
crowding selection and introduces a replacement technique known
as Worst-Among-Most-Similar (WAMS) to encourage
competition among members of the same niche.

In crowding selection most individuals in the population get
a chance for mating in every generation. Application of this
selection rule is done in two steps. First, an individual from the
population is selected at random as a parent for mating. Second,
its mate is selected, not from the entire population, but from a
small group of individuals of size Cs (crowding selection group
size), picked uniformly at random (with replacement) from the
population. The mate thus chosen must be the one who is most
“similar” to the selected individual. The similarity metric used
here is not a genotypic metric such as the Hamming distance, but
a suitably defined phenotypic distance metric.

.

.

.

Population

Randomly

Group 1 with
s individuals

Individual 1
Offspring

Lowest fitted
individual

Most similar
to offspring

Group Cf with
s individuals

Individual Cf

.

.

.

.

.

.
Replaces.

.

.

Population

Randomly

Group 1 with
s individuals

Individual 1
Offspring

Lowest fitted
individual

Most similar
to offspring

Group Cf with
s individuals

Individual Cf

.

.

.

.

.

.
Replaces

Figure 2: WAMS replacement strategy.

The WAMS replacement strategy (Figure 2) is implemented
by running a series of tournaments, finding a winner for each
tournament, and then having the tournament winners compete
against each other for the position of series winner. First, Cf
“crowding factor groups” are created by picking uniformly at
random (with replacement) s (crowding group size) individuals
per group from the population. Second, one individual from each
group that is most similar to the offspring is identified. This gives
Cf individuals that are candidates for replacement by virtue of
their similarity to the offspring. The offspring will replace one of
them. From this group of most similar candidates, we pick the one
with the lowest fitness to die and be replaced by the offspring.
The series winner’s is replaced by the newly-generated individual.

The MNC-GA is an algorithm that (a) maintains stable
subpopulations within different niches, (b) maintains diversity
throughout the search, and (c) converges to different local optima.
No prior knowledge of the search space is needed and no
restrictions are imposed during selection and replacement thus
allowing exploration of other areas of the search space while
converging to the best solutions in the different niches.

5. The Enhanced Evolutionary Tabu Search
The general structure of EE-TS is based on RE-TS. Unless

noted, EE-TS operates in the same way. Consult [1] for a detailed
description of RE-TS. Here, we only describe the enhancements
implemented in EE-TS.

Figure 3 depicts the overall EE-TS process. Unique elements
of the EE-TS include: (1) the generation of an initial population at
the beginning of the algorithm and during the escape mechanism,

977

(2) the running of a tournament series and the processing
associated with the result for each iteration, and (3) the running of
a tournament series in order to choose a new solution during the
escape mechanism. The main goal of the enhancements is to
introduce an evolutionary mechanism that contributes to the
balance between exploring and exploiting the search space.

The original RE-TS implements a purely random mechanism
for generating new solutions. In EE-TS, new solutions are
generated using a heuristic operator. The EE-TS heuristic operator
assigns facilities to locations by attempting to place facilities with
high shipping costs into locations that are on average closer to
other locations. Randomness is introduced into the heuristic
operator in order to ensure that a variety of solutions are
generated. A Restricted Candidate List (RCL) approach is used
where some percentage of the best candidate assignments are
eligible to be chosen as the next assignment. First, the unassigned
location with the lowest average distance to the other locations is
chosen. The RCL is then built by selecting the top 25% of
unassigned facilities with the lowest total shipping costs. One of
the facilities from the RCL is chosen at random and assigned to
the location. This process repeats until all locations have been
assigned a facility.

Step 1: Generate initial Population P.

Step 2: Set i and i* to best solution in P.

Step 3: Set escape := checkForRepetitions(i).

Step 4: if escape = FALSE then

evaluateNeighborhood().

move := chooseBestMove().

champion := runSeriesOfTournaments().

child := crossOver(i, champion).

if fitness(child) < fitness(i, move) then

 i := child.

else
 i := applyMove(i, move).

Step 5: else
champion := runSeriesOfTournaments().

i := crossOver(i, champion).

resetTabuListAndSolutionHistory();

Step 6: If fitness(i) < fitness(i*) then set i* = i.

Step 7. If a stopping condition is met then stop. Else go to Step 3.

Figure 3: EE-TS Pseudo Code

To complete the creation process, a greedy local search is
performed on the new solution to find a local minimum. This
minimum is used as the new solution. Local search usually
involves the evaluation of a neighborhood followed by a
transition into the most-fit neighbor. Instead of evaluating the
entire neighborhood and choosing the best move, the greedy local
search used in EE-TS begins evaluating the neighbors, but always
accepts the first one found that has a better fitness than the current
solution. Each time a better neighbor is found the current solution
transitions to the neighbor and the search begins again. The search

is complete when an entire neighborhood is evaluated and the
current solution has a better fitness than any of its neighbors.
Figure 4 provides the pseudo code for the greedy local search
technique in EE-TS.

By their nature, Tabu Search tends to have a limited amount
of stochastic behavior. Some randomness does exist in the
creation of initial solutions and in the size of the Tabu List for a
Robust Tabu Search, but compared to many other Soft Computing
techniques Tabu Search is a fairly predictable process. Some work
has been done on introducing more randomness into Tabu Search
[16]. The EE-TS increases the amount of stochastic behavior in
the following manner: during each iteration of EE-TS, after a
move is selected, a new solution is generated with some
randomness. If this new solution has a worse fitness than that
which would result from applying the selected move to the current
solution, then the move is accepted and the Tabu List is updated
in the usual manner defined by the RE-TS. If the new solution is
better than the move, however, then the new solution is accepted
and nothing is added to the Tabu List. The effect on the Tabu
Search is similar to the Evolutionary Computing concept of
mutation; a higher degree of randomness is introduced into the
normal processing flow. In addition, the new solution contains
characteristics of previously-visited good solutions, with the
intent that these characteristics contribute to the exploration and
exploitation of new, well-fit areas of the search space.

Step 1: Set i := 0

Step 2: Set j := i + 1

Step 3: Set moveValue := cost_of_swap(location i, location j).

Step 4: If moveValue > 0 then

Swap facilities at locations i & j.

 Go to step 1.

Step 5: Set j := j + 1.

Step 6. If j < N-1 then go to step 3.

Step 7: Set i := i + 1.

Step 8. If i < N-1 then go to step 2.

Figure 4: Greedy local search pseudo code.

The mechanism by which these new stochastic moves are

generated in the EE-TS is based on common Evolutionary
Computing operations: selection and recombination. Instead of
generating a completely random (or greedy) solution for each
iteration, the EE-TS recombines the current solution with another
randomly-selected, well-fit solution. The resulting offspring
fitness is compared with the selected best move from the current
solution. Recombination is performed such that common traits are
retained in the offspring—if both parents are well-fit it is likely
that the common traits are desirable. The resulting offspring
solution may be a good solution that is some distance away from
the current solution, in a new area of the search space. A greedy
local search is then performed on the offspring solution to
transition it to a local minimum. If the new solution is better than
the current move then it is accepted over the selected move. The
algorithm in effect jumps to the new solution and continues
searching from there.

978

Selection is performed in the EE-TS using a tournament
technique similar to the WAMS operator described previously. A
series of tournaments is run, and the winner of the series is the
individual selected for use in the recombination operation along
with the current solution. The winner of each discrete tournament
is chosen based on similarity, measured in relation to the current
solution. The winner of a tournament series is determined based
on fitness. Unlike WAMS, which is used in conjunction with the
crowding selection technique in order to assist with the fostering
and management of multiple niches within a population, the EE-
TS technique is implemented with a complementary
recombination approach to further enhance the Tabu Search’s
ability to explore and exploit the search space.

Similarity is based on the number of facilities assigned to the
same location. If, for each location, the facility assigned in
solution A does not match the facility assigned in solution B, the
similarity score is incremented by one. Two identical solutions
will have a similarity of zero.

Figure 5: BAMD and BALD Techniques.

Two distinct selection approaches were tried during the
development of EE-TS and are depicted in Figure 5. They are:
Best-Among-Most-Different (BAMD) and Best-Among-Least-
Different (BALD). The idea behind BAMD is that by selecting a
solution for recombination that has little in common with the
current solution, but that still has a good fitness, the algorithm
will be lead into new and unexplored areas of the search space.
For smaller-sized problems, where it is more likely that
individuals will have many facility/location assignments in
common, the BAMD technique would seem to be especially
useful. It is important to note with this technique, however, that as
problem size increases it becomes more likely that the most
different individual will have no facility-location assignments in
common with the current solution at all. If this should occur, it
would negate the propagation of good characteristics to any
offspring, since no common traits would exist in the parents. To
counter such behavior, the BALD technique was developed for

use with larger-sized problems, where it is more likely that the
least different individual will have very few (if any) facility-
location assignments in common with the current solution. It can
be observed that BALD is a niching technique similar to WAMS.

The contestants in the individual tournaments are chosen
randomly with replacement, from the current run’s population.
This population consists of all previously-visited solutions for the
current run of the EE-TS algorithm. Unlike the populations of
most traditional Evolutionary Computing techniques, the EE-TS
population does not maintain a constant size. Instead, it continues
to grow during the course of a run. The population size decreases
only when an escape occurs, at which time the population is
cleared.

Special attention must be paid to the early iterations of the
EE-TS: Since the tournaments are carried out with individuals
from the population, and the population is made up of previously-
visited solutions, the population is not adequately-sized at the
beginning of a run in order for a series of tournaments to be
worthwhile. In order to hold a meaningful series of tournaments at
this early stage, the EE-TS incorporates the idea of an initial
population into its design. At the beginning of a run of the
algorithm, before any Tabu Searching functionality is performed,
a set of random solutions is generated using the greedy RCL
technique described previously. The best solution in the initial
population is used as the starting point of the run, the others are
treated as previously-visited solutions and are available to take
part in any of the tournaments held throughout the course of the
run. Additionally, whenever an escape occurs and the list of
previously-visited solutions is cleared, an initial population is
generated before Tabu Searching resumes.

In the interest of minimizing the amount of time spent on the
recombination operation, it is implemented with a fairly simple
approach: any facility-location assignments that are found in both
parents are passed on to the offspring. All remaining unassigned
facility-location assignments in the child are chosen at random.
The final step in this recombination strategy is a greedy local
search on the new offspring.

Including this recombination process at each iteration
augments the way in which the Tabu Search explores and exploits
the search space. If the two solutions being recombined are very
similar, the offspring will be exploiting those characteristics. If
the two solutions being recombined have little in common, the
offspring will most likely be exploring different areas of the
search space. Instead of only being aware of the neighborhood of
the current solution, the EE-TS is able to consider transitioning to
an out-of-neighborhood solution, but one which is derived from
information learned over the course of the run.

6. Results
Several of the Enhanced Evolutionary Tabu Search’s features

can be parameterized at runtime, and the settings for these
variables could have a significant impact on the performance and
behavior of the algorithm. Battiti and Tecchiolli have done a more
than adequate job at describing the variables associated with
elements of the Reactive Tabu Search, so this paper will focus
exclusively on new parameters introduced with the EE-TS
enhancements. All EE-TS runs have been performed with the
default RE-TS configuration.

The EE-TS exclusive variables are: Population Size,
Tournament size, Tournament Series Size, and Selection Strategy.

979

A separate group of runs was performed for each of these
parameters over a collection of five QAP problems from the
Taillard set. Each problem increased in size by an increment of
20, with the smallest problem being of size 20 and the largest of
size 100.

Tables 1 through 4 contain the results of the examination of
the data collected during the parameter discovery test runs. Ten
runs were performed for each variable value and problem
combination. To determine which value was to be used in the
final EE-TS configuration, comparisons between the average of
the best fitness recorded for the ten runs were performed. In
Tables 1 through 4, the variable value that performed best for
each problem is labeled as Best. In the event that multiple values
obtained the same best average fitness, the least processor-
intensive value was deemed the Best. In most of the tests, all of
the results were very close. This is most likely attributable to two
factors: the fitness scores were all large numbers—in the
hundred-thousands or millions—so even a small percentage
difference could be a substantial gap, and the underlying RE-TS
structure was not hindered in any way, so that even a poor EE-TS
variable configuration would still find good solutions.

Table 1: Comparison of population size as a function of the

number of location and facilities (N).

Pop Size Tai20a Tai40a Tai60a Tai80a Tai100a

N + 0 % + 0.120% + 0.005% Best + 0.048%

N / 2 + 0% + 0.170% Best + 0.005% + 0.019%

N / 4 Best Best + 0.009% + 0.036% Best

Table 2: Comparison of tournament size as a function of

population size.

Tournament
Size

Tai20a Tai40a Tai60a Tai80a Tai100a

Pop Size + 0% Best + 0.074% + 0.079% + 0.142%

Pop Size / 2 + 0% + 0.042% Best + 0.080% + 0.080%

Pop Size / 4 Best + 0.055% + 0.016% Best Best

The following values were decided upon for use as the final
configuration of the EE-TS: The population size was set to one

fourth of the problem size; the size of each tournament was set to
one fourth of the population size, with a minimum size of two;
each tournament series was made up of five tournaments; and the
BAMD strategy was used as the selection strategy. In general, the
value which lead to the most Best’s was selected for use. With the
tournament series size variable, five was chosen over seven in
order to decrease execution time. The difficulty in choosing the
variable values in this way is that it is unlikely that any of the
variables impact the algorithm discretely. Instead, the combined
configuration of the variables must be observed to discover the
ideal values. Due to time constraints, such a thorough
investigation was not performed, but would be beneficial to future
development of the EE-TS.

Table 4: Comparison of discrete values for tournament series

size.

Series
Size

Tai20a Tai40a Tai60a Tai80a Tai100a

1 + 0.061% + 0.009% + 0.072% Best + 0.132%

3 + 0.030% + 0.072% + 0.106% + 0.044% + 0.063%

5 Best + 0.060% Best + 0.023% + 0.043%

7 + 0.061% Best + 0.084% + 0.031% Best

Table 5: Comparison of selection strategies.

Selection
Strategy

Tai20a Tai40a Tai60a Tai80a Tai100a

BAMD Best Best Best Best Best

BALD + 0.263% + 0.667% + 0.804% + 0.941% +0 .999%

The selection strategy results in Table 4 show that the

BAMD approach outperformed the BALD approach in every case,
especially in the larger problems where it was originally theorized
that BALD would help to improve performance. These results
deserve further study, but one explanation for the observed
behavior is that with the larger problems even the least distant
solutions often had no assignments in common with the current
solution and that the BALD strategy therefore had no advantage
over BAMD. With the smaller problems, it was assumed that
BAMD would outperform BALD.

Table 3: Comparison of average iterations before convergence to best solution for EE-TS, RE-TS, S-TS, and RO-TS

EE-TS Prob. Max. Iter.
EE-TS /
Others

Avg. Iterations Results
RE-TS S-TS RO-TS

Tai9a 100K / 100K 102.5 (34.2) 30/30 67.5 (12.0) 56.2 (8.1) 31.7

Tai10a 100K / 100K 96.2 (15.1) 30/30 256.7 (34.0) 161.3 (20.7) 137.1

Tai12a 100K / 100K 114.5 (21.7) 30/30 282.3 (51.4) 477.0 (95.7) 210.7

Tai15a 100K / 100K 1084.8 (205.4) 30/30 1780.3 (319.0) 3642.2 (308.2) 2168.0

Tai17a 100K / 100K 1196.2 (218.0) 30/30 4133.9 (646.8) 7364.2 (817.4) 5020.4

Tai20a 100K / 500K 14970.8 (2502.5) 30/30 37593.2 (6012.5) 25092.9 (6572.2) 34279

Tai25a 100K / 1M 19322.3 (2922.7) 30/30 38989.7 (6236.1) 20483.9 (3575.0) 80280.4

Tai30a 100K / 2M 31905.3 (5001.4) 24/30 68178.2 (11370.3) 48919.2 (9055.6) 146315.7

Tai35a 100K / 4M 48457.6 (5690.9) 10/30 281334.0 (48543.5) 146276.2 (47419.7) 448514.5

980

A series of runs was performed with the EE-TS based on the
published results of various other metaheuristic search techniques.
Table 5 shows comparisons between the EE-TS and several other
successful Tabu Searches over a set of problems from the Taillard
set ranging in sizes from 9 to 30. Thirty runs were performed on
each problem for each approach. The average number of iterations
required to find the best solution is shown along with the standard
deviations in parentheses. The RE-TS, S-TS, and RO-TS data
contained in this table was gathered from Battiti and Tecchiolli
[1]. For all but the first problem, the EE-TS required fewer
iterations to find the optimal solution. For all runs of the EE-TS a
maximum of 100,000 iterations was allowed. For the four largest
problems, this number differed from that of the other Tabu Search
techniques, which were set to run for a much higher number of
iterations. For the two largest problems, the EE-TS failed to find
the best known solution for some of the 30 runs performed on
each problem. Allowing for a greater number of iterations may
have improved this area of performance.

In all cases, the runtime environment for the RE-TS, S-TS,
and RO-TS tests was either not known or could not be duplicated,
so time comparisons are not possible. Still, it should be noted that
the EE-TS adds additional processing to the RE-TS, including
local searches for each iteration. This undoubtedly has some
impact on execution time, and deserves further investigation.
Also, no time was permitted for optimization purposes and
potential improvements in this area should be reviewed as well.

Table 6: EE-TS statistical averages.

Prob. Results Evol.Solution
Accepts

Move Accepts Escapes

Nug15 30/30 29.7 (5.0) 65.7 (9.7) 1.0 (0.2)

Nug30 30/30 171.0 (35.4) 1846.2 (461.3) 8.5 (1.6)

Sko49 23/30 487.6 (63.7) 50354.4 (6534.2) 60.0 (7.6)

Sko56 30/30 213.0 (37.8) 21008.1 (3761.8) 24.8 (4.3)

Sko64 29/30 206.1 (40.5) 22645.3 (4404.8) 27.6 (5.1)

Tai9a 30/30 86.0 (33.1) 15.7 (3.1) 0.8 (0.2)

Tai10a 30/30 54.0 (12.2) 41.1 (5.7) 1.1 (0.2)

Tai12a 30/30 66.3 (14.9) 46.6 (7.7) 1.7 (0.3)

Tai15a 30/30 214.3 (37.2) 864.0 (167.9) 6.5 (1.1)

Tai17a 30/30 220.0 (36.6) 969.0 (181.9) 7.3 (1.2)

Tai20a 30/30 1563.0 (264.9) 13359.3 (2230.7) 48.4 (8.2)

Tai25a 30/30 1217.2 (187.9) 18069.3 (2730.2) 35.8 (5.7)

Tai30a 24/30 2667.0 (376.3) 43335.4 (6380.0) 103.7 (14.6)

Tai35a 10/30 1753.5 (133.3) 78251.5 (5891.0) 88.3 (6.8)

In addition to the Taillard set problems listed in Table 5,

several problems from the Nugent, Vollman, and Ruml and
Skorin-Kapov sets were used to conduct runs as well. Table 6
shows some of the statistics collected for tests consisting of 30
runs per problem, including the number of successful runs, the
average number of evolutionary solutions accepted during each
run, the average number of normal moves accepted for each run,

and the average number of escapes performed for each run.
Numbers in parentheses are standard deviations. Of the fourteen
problems, only four tests failed to find the best known solution for
all 30 runs. Interestingly, all runs for the Nug30 problem
discovered the best known result, a feat not duplicated by any of
the approaches examined in Merz and Freisleben’s comparison of
various metaheuristic search techniques [20]. Also interesting to
note is that for problems with sizes less than 15, the number of
evolutionary solutions accepted was greater than the number of
normal moves accepted. With these smaller problems, it is likely
that the recombination technique—which included the greedy
local search—was very successful at quickly finding very good
minima, much more so than the un-enhanced Tabu Search
elements of the EE-TS.

A final observation on Table 6 is that the average number of
escapes is fairly small for each of the problems. This implies that
few solutions were visited multiple times. Also, for the larger
problems the average number of normal move acceptances is far
greater than the number of evolutionary move acceptances, which
indicates that the pure Tabu Search features of the EE-TS had
more success at identifying better-fit solutions within the search
space. One of the strengths of the EE-TS design is that it contains
more than one mechanism by which to manage the exploration
and exploitation of the search space—one inherited from the RE-
TS’s dynamic Tabu List length and escape mechanism and one
gained from the generation of new solutions via recombination—
and that these mechanisms have the potential to complement or
compensate for each other over the course of any given run. The
recombination operation gives the algorithm the opportunity to
consider solutions that may be outside of the neighborhood of the
current iteration, but which demonstrate good characteristics
based on what has previously been seen over the course of a run.
When the recombination technique is repeatedly successful at
discovering good solutions, its results can dominate the flow of
the algorithm. When it is not, the Tabu Search will continue to
explore and exploit the search space in its own way.

Table 7: Results for larger problem sizes with number of

iterations of 100K.
Prob. Results Avg. Best Distance

from
Known

Best

Avg. Iterations

Tai40a 0/30 3154048.1 (670.3) + 0.4675% 53528.7 (5200.5)

Tai60a 0/10 7272281.4 (2737.0) + 0.9203% 69505.6 (8468.8)

Tai80a 0/10 13637294.8 (4203.7) + 0.7486% 50067.4 (6042.1)

Tai100a 0/10 21263584.4 (6303.6) + 0.7486% 62542.5 (8754.1)

Finally, a series of runs was performed on a collection of
larger problems. Due to the amount of processing time required to
run these tests, only 10 runs per problem were performed in most
cases. In all cases, the maximum number of iterations allowed was
100,000. Generally, a much greater number of iterations
(sometimes millions) is needed by other established metaheuristic
search techniques to discover the best known solutions. Not
surprisingly, none of the tests described in Table 7 found the best
known solution to the respective problems. What is shown,
however, is that for all of the runs the average best found
solutions came within less than 1% of the best known solutions.

981

The best known solution fitnesses were taken from the QAPLIB
[5].

7. Conclusions and Recommendations
This paper has described a new metaheuristic technique

based on elements of Tabu Searching and Evolutionary
Computing. The Quadratic Assignment problem was used during
development of the new algorithm for tuning purposes, and also
to compare its performance with established searching techniques.
The Enhanced Evolutionary Tabu Search (EE-TS) augments the
exploration and exploitation of a search space inherent in the RE-
TS by introducing selection and recombination operations that use
information about good solutions discovered during a run of the
algorithm to influence the search. Through demonstration, it was
shown that the Enhanced Evolutionary Tabu Search was able to
reach an optimum value—the best known value, in most cases—
of a problem in fewer iterations than other well-known
techniques. While no solutions have yet been found with the EE-
TS that are better than any previously known solutions, the fact
that fewer iterations were required for successful searches implies
that in some scenarios, the EE-TS may be a better choice than the
established techniques.

Based on these results, further investigation is deserved of
the EE-TS algorithm. Specifically, a more thorough examination
of the impact of the configuration variables and their relationships
could lead to better performance. Also, promising initial tests
require longer runs (more iterations) be attempted on larger
problems to observe comparable performances with other
approaches. Additional areas that would benefit from more
research include the effects of the BALD technique on larger
problem sizes, the impact of a randomly-generated escape
solution, the evaluation and possible improvement of execution
time, and the development of optimization strategies for the
algorithm’s source code.

8. ACKNOWLEDGMENTS
The authors thank to Lockheed Martin Integrated Systems &

Solutions and the Molecular Design and Informatics group at
Johnson & Johnson Pharmaceutical R&D for providing us with
the time and support to carry out this research. The authors thank
the anonymous reviewers for their many valuable comments and
for bringing to our attention some relevant published work.

9. REFERENCES
[1] Battiti, R. and Tecchiolli, G. The reactive tabu search. ORSA

Journal on Computing, 6, 2, 126-140, 1994.

[2] Glover, F. and Kochenberger, G. A. Handbook of
Metaheuristics. Kluwer Academic Publishers, 2003.

[3] Nugent, C.E., Vollmann, and T.E., Ruml, J. An experimental
comparison of techniques for the assignment of facilities to
locations. Operations Research, 16:150-173, 1968.

[4] Resende, M., Pitsoulis, L., Pardalos, P. Fortran subroutines
for computing approximate solutions of weighted MAX-SAT
problems using GRASP. Discrete Applied Mathematics, 100:
95-113, 2000.

[5] Burkhard, R.E., Karish, S.E., and Rendl, F. QAPLIB – A
quadratic assignment problem library. Journal of Global
Optimization, 10:391-403, 1997.

[6] Sahni, S. and Gonzalez, T. P-complete approximation
problems. J. ACM 23, 555-565, 1976.

[7] Anstreicher, K.M. Recent advances in the solution of
quadratic assignment problems. Mathematical Programming,
Series B 97:27-42, 2003.

[8] Taillard, E. D. Robust tabu search for the quadratic
assingnment problem. Parallel Computing, 17:443-455,
1991.

[9] Skorin-Kapov. Tabu search applied to the quadratic
assingnment problem. ORSA Journal on Computing,
2(1):33-45, 1990.

[10] Taillard, E. Comparison of iterative searches for the
quadratic assignment problem. Location Science, 3:87-103,
1995.

[11] Glover, F. Future Paths for Integer Programming and Link to
Artificial Intelligence. Computers and Operations Research,
12:533-549, 1986.

[12] Glover, F. Tabu search – part I. ORSA Journal on
Computing, 1(3): 109-206, 1989.

[13] Glover, F. Tabu Search – part II. ORSA Journal on
Computing, 2:4-32, 1990.

[14] Glover, F., Laguna, M. Tabu Search. Kluwer Academic
Publishers, 1997.

[15] Glover, F. Laguna, M. Tabu Search. Modern Heuristic
Techniques for Combinatorial Problems. Colin Reeves, ed.
Blackwell Scientific Publishing, 71-140, 1993.

[16] De Falco, I., Del Balio, R., Tarantino, E., and Vaccaro, R.
Improving search by incorporating evolution principles in
parallel tabu search. IEEE World Congress on
Computational Intelligence, 2:823-828, June 27-29, 1994.

[17] Holland, J.H. Adaptation in Natural and Artificial Systems,
2nd Edition, Cambridge: MIT Press, 1992.

[18] Mitchell, M. An Introduction to Genetic Algorithms,
Cambridge: MIT Press, 1996.

[19] Cedeño, W. The Multi-Niche Crowding Genetic Algorithm:
Analysis and Applications, Ph.D. Dissertation, Computer
Science Department, University of California, Davis,
September 1995. UMI Dissertation Services, Microfilm
Number 9617947.

[20] Merz, P. and Freisleben, B. A comparison of memetic
algorithms, tabu search, and ant colonies for the quadratic
assignment problem. In Proceedings of the 1999
International Congress of Evolutionary Computation
(CEC'99), Washington DC, USA, 1999.

982

