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ABSTRACT 
We describe the Enhanced Evolutionary Tabu Search (EE-TS) 
local search technique. The EE-TS metaheuristic technique 
combines Reactive Tabu Search with evolutionary computing 
elements proven to work well in multimodal search spaces. An 
initial set of solutions is generated using a stochastic heuristic 
operator based on Restricted Candidate List. Reactive Tabu 
Search is augmented with selection and recombination operators 
that preserve common traits between solutions while maintaining 
a diverse set of good solutions. EE-TS performance is applied to 
the Quadratic Assignment Problem using problem instances from 
the QAPLIB. The results show that EE-TS compares favorably 
against other known techniques. In most cases, EE-TS was able to 
find the known optimal solutions in fewer iterations. We conclude 
by describing the main benefits and limitations of EE-TS.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – heuristics. 

G.1.6 [Mathematics of Computing]: Optimization – constrained 
optimization. 

General Terms 
Algorithms, Performance. 

Keywords 
Tabu Search, Quadratic Assignment Problem, Optimization, 
Evolutionary Algorithms, Genetic Algorithms, Soft Computing. 

1. INTRODUCTION 
This work introduces the Enhanced Evolutionary Tabu 

Search (EE-TS), a metaheuristic technique that combines Reactive 
Tabu Search (RE-TS) [1] with evolutionary computing elements 
that have proven to work well in multimodal search spaces. EE-
TS is a metaheuristic search technique that can be classified as a 

stochastic method, one of many soft computing techniques [2]. In 
this paper we describe the background and design of EE-TS and 
its performance when applied to the Quadratic Assignment 
Problem (QAP) [3]. 

EE-TS is initialized with a set of solutions generated using a 
stochastic heuristic operator based on Restricted Candidate List 
(RCL) [4]. RE-TS is augmented with selection and recombination 
operators that preserve common traits between solutions while 
maintaining a diverse set of good solutions. The performance of 
EE-TS is evaluated using problem instances from the QAP 
Library (QAPLIB) [5].  

The QAP is NP-hard [6] and many practical instances come 
from areas such as design and resource allocation. The QAP is a 
non-trivial combinatorial optimization problem for even the small 
problem sizes. It deals with identifying optimal assignments of 
facilities to locations such that the cost of the resulting system is 
minimized. The QAP has application to a wide range of situations 
and domains, such as microprocessor design, machine scheduling, 
and even the topographical layout of wards and services in a 
hospital. Due to the complexity of problems, solutions to the QAP 
are often found through the application of metaheuristic search 
techniques, and the QAP has become in some ways a benchmark 
by which new techniques are validated. EE-TS is shown to 
compare favorably to other known techniques using a set of 
problems from the QAPLIB. In most cases, EE-TS was able to 
find the known optimal solutions in fewer iterations.  

The next section presents a formal definition of the QAP, 
including its mathematical representation. Section 3 provides a 
brief overview of the tabu search. Section 4 describes the 
evolutionary computing enhancements in EE-TS. Section 5 
provides a detailed description of EE-TS. Section 6 describes the 
environment used to test the performance of EE-TS. Section 7 
presents the results for various problems in the QAPLIB. We 
conclude with a discussion of the benefits, limitations, and future 
enhancements of EE-TS.  

2. The Quadratic Assignment Problem 
The QAP is a resource allocation problem where the goal is 

to discover the best cost-effective distribution of resources. Given 
N facilities and N locations, assign each facility to a location such 
that each location is assigned a single facility and the total 
shipment cost is minimized. The total shipment cost is a function 
of the distances between the locations and the shipment costs 
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between the facilities and is represented by the formula shown in 
Equation (1), 
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where aij represents the distance between locations i and j, and 
bφ(i)φ(j) represents the shipment cost between the facilities assigned 
to locations i and j. 

Even with today’s best computers, relatively small problems  
(N=25) require prohibitive amounts of time to solve to provable 
optimality [7]. Consequently, metaheuristic algorithms are 
commonly applied to the QAP. A summary of recent advances for 
solving the QAP can be found in [7]. 

The problem instances used in the development and testing 
of EE-TS were obtained from the QAPLIB, a library of QAP 
problems and their best-known solutions. The problems are 
organized into sets, with each set named after the author(s) who 
developed the group of problems. Some problems were generated 
randomly, while others are based on real-world data. The selected 
data sets include the Taillard set [8], the Nugent, Vollman, and 
Ruml set [3], and the Skorin-Kapov set [9]. Several of the 
selected data sets were previously used to test RE-TS [10]. 

3. Tabu Search Overview 
Glover introduced Tabu search (TS) in the late 80’s [11][12] 

[13]. The basic idea behind TS is that adding short-term memory 
to a local search improves its ability to locate optimal solutions. 
Revisiting previously or recently visited solutions is discouraged, 
and operations that would do so are labeled as being “tabu” or 
“taboo”. Glover proposed the use of both statically- and 
dynamically-sized memory structures for tracking tabu operations. 
In 1991 Taillard created the Robust Tabu Search (RO-TS), which 
introduced a dynamic randomly-sized short-term memory design. 
Battiti and Tecchiolli developed the RE-TS [1] in 1994 which 
based the dynamic size of its short-term memory on runtime 
characteristics of the algorithm and which also utilized a form of 
long-term memory that helped prevent searches from stagnating. 
Many other Tabu Search variations have been developed that 
incorporate various forms of dynamically-sized short-term 
memory and long-term memory [14][15], but the RO-TS and RE-
TS remain among the most successful and popular. Other 
approaches have been developed through experimentation with 
features such as socialization and competition [16] or, like the 
EE-TS, the integration of evolutionary operators useful for 
multimodal optimization. The following concepts are common to 
most (if not all) Tabu Search techniques, but their specific 
implementations are somewhat flexible. 

A move is an operation by which one solution transitions 
into a neighboring solution. A solution’s neighborhood, N(i,k), is 
the set of all solutions that can be transitioned to from the given 
solution i at iteration k by applying a valid move. For the QAP, a 
common move strategy consists of swapping facilities assigned to 
two locations.  

The Tabu List is perhaps the most influential piece of any 
Tabu Search design. The basic purpose of the list is to maintain a 
record of which moves are tabu during each iteration. Many 
subtleties in how this task is carried out have been shown to 
greatly impact the performance of Tabu Search. Usually, a move 
added to the Tabu List is the reciprocal of the move last accepted 

and applied to the current solution. The reciprocal is recorded to 
prevent the search from “undoing” recent moves. Several 
approaches exist for handling the determination of Tabu List 
length, but the most common are the approaches used in the Strict 
Tabu Search (S-TS) [12], the RO-TS, and the RE-TS. 

In Battiti and Tecchiolli’s RE-TS application to the QAP, the 
tabu list keeps track of the assignment history of each facility to 
each location. If the current solution has facility F1 located at 
location L1 and facility F2 located at location L2 and a move 
defined as swapping the facilities at L1 and L2 is accepted, then 
any move which places facility F1 back at location L1 or facility 
F2 back at location L2 is tabu. Just how long such a move is 
considered tabu is based on the length of the Tabu List.  

The simplest Tabu Searches used a fixed-length list. Other 
techniques incorporate a dynamically changing list length 
throughout the course of a run. In the RO-TS, this is 
accomplished by randomly choosing a new list length at set 
intervals. The goal is to emphasize the exploration 
(diversification) and exploitation (intensification) of the search 
space. When the list length is long, it contains many tabu moves 
and therefore the search will be forced into new areas and 
directions—forced to explore. When the list is short, a fewer 
number of moves are tabu and the search can stay focused on 
solutions in a relatively small area of the search space—exploiting 
the smaller area. 

Battiti and Tecchiolli agreed that Taillard’s implementation 
of a dynamically-changing list size was powerful, but based the 
size changes in the RE-TS on dynamic characteristics of the 
current run [1]. Instead of the randomness of the RO-TS, the RE-
TS determines whether the list length should be increased or 
decreased by tracking the number of duplicate solutions visited 
during each interval. An interval is defined as a pre-determined 
number of iterations within a search. If a large number of 
duplicates are visited, the list length is increased in order to force 
the exploration of other areas. If few or no duplicates are 
encountered, the list length is decreased to focus the search; to 
exploit the current area before moving on. Tracking duplicate 
visitations requires long-term memory sometimes referred to as 
frequency memory. It has generally been shown that TS 
techniques that include a long-term memory tend to perform 
better than those that do not [15]. 

Strict Tabu Search (S-TS) is the most straightforward 
technique. With S-TS all previously-visited solutions are tabu for 
the remainder of the run. With this approach the length of the 
Tabu List is always equal to the current iteration and is therefore 
constantly growing. 
 

Step 1. Create an initial solution i at random. Set i*=i and k=0. 

Step 2. Set k=k+1 and generate a subset V* of solutions in N(i,k) 
such that either one of the tabu conditions tr(i,m)∈Tr is 
violated (r=1,...,t) or at least one of the aspiration 
conditions ar(i,m)∈Ar(i,m) holds (r=1,...,a). 

Step 3. Choose a best j=i⊕m in V* (with respect to objective 
function f) and set i=j. 

Step 4. If f(i) < f(i*) then set i*=i. 

Step 5. Update tabu and apsiration conditions. 

Step 6. If a stopping condition is met then stop. Else go to Step 2. 

Figure 1: Tabu Search pseudo code. 
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When selecting the next move to perform, a Tabu Search 
evaluates the neighborhood of the current solution and attempts to 
find the best non-tabu move; “best” being determined by the 
objective value of the resulting solution, should the move be 
applied. Sometimes, however, it may be desirable to allow a tabu 
move to be chosen. The conditions under which a tabu move 
would be allowed are known as the Aspiration Criteria. The most 
common aspiration criteria is to test whether or not the 
implementation of the tabu move would result in the best-fit 
solution yet found for the current run. This is the criteria used by 
Battiti and Tecchiolli in the RE-TS. Figure 1 shows the basic 
elements of TS. 

During a Tabu Search run, it is possible that a single solution 
will be visited multiple times. To some degree this is desirable; it 
supports the concepts of exploitation and exploration. On 
repeated visits of a solution, the Tabu List will most likely contain 
a different set of tabu moves, and the search may travel a new 
path. Problems can arise, however, depending on the length of the 
Tabu List; a search can get caught in a loop and continuously 
revisit the same solution. When the chain of moves involved in 
the loop is longer than the length of the Tabu List, this will result 
in an infinite loop and the algorithm will spend all of its time 
evaluating the same solutions repeatedly, leaving large areas of 
the search space unexplored. 

The EE-TS incorporates many of the elements of RE-TS, 
including a two-level escape mechanism to prevent such infinite 
loops. This escape mechanism is based on the incorporation of 
long-term memory within the RE-TS. For each solution that is 
visited, a corresponding record of the solution is maintained along 
with a counter. Each time a solution is revisited, the counter is 
incremented. If a solution has been visited more than some 
predefined number of times the first level of the escape 
mechanism passes for that solution. The second level passes when 
a predefined number of solutions have passed the first level. 
When the second level passes, an escape occurs: the Tabu List is 
emptied and a new solution is generated randomly. The revisited 
solution counters are reset as well. The search effectively restarts 
but maintains the current iteration count. 

 

4. Evolutionary Computing Concepts and 
Operators in EE-TS 

Evolutionary Computing strategies are based on concepts 
associated with the natural process of evolution [17]. Traits are 
passed from parents to offspring with operators that mimic 
selection and recombination. Over time, those traits that are 
undesirable for survival will be weeded out of a population while 
“good” traits become prevalent. This “Survival of the Fittest” 
approach has been successful when applied to many complex 
problems [18]. Here, we introduce concepts that have been 
incorporated to some degree into the design of EE-TS. The 
specific details are discussed in the next section. 

Quite often, the search space for a problem will contain 
multiple local optima. Such a problem is considered to be 
multimodal. It is possible for an algorithm to become trapped in 
one of these local optima and be unable to discover the global 
optimum. Mutation and random restart are techniques used to try 
to avoid this situation. Another approach is the use of a technique 
that has been designed for multimodal landscapes, such as the 
Multi-Niche Crowding Genetic Algorithm (MNC-GA) [19], 
which naturally encourages the creation of species that converge 

to multiple niches in the search space. MNC-GA is a genetic 
algorithm that replaces fitness proportionate reproduction with 
crowding selection and introduces a replacement technique known 
as Worst-Among-Most-Similar (WAMS) to encourage 
competition among members of the same niche. 

In crowding selection most individuals in the population get 
a chance for mating in every generation. Application of this 
selection rule is done in two steps. First, an individual from the 
population is selected at random as a parent for mating. Second, 
its mate is selected, not from the entire population, but from a 
small group of individuals of size Cs (crowding selection group 
size), picked uniformly at random (with replacement) from the 
population. The mate thus chosen must be the one who is most 
“similar” to the selected individual. The similarity metric used 
here is not a genotypic metric such as the Hamming distance, but 
a suitably defined phenotypic distance metric. 
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Figure 2: WAMS replacement strategy. 

 

The WAMS replacement strategy (Figure 2) is implemented 
by running a series of tournaments, finding a winner for each 
tournament, and then having the tournament winners compete 
against each other for the position of series winner. First, Cf 
“crowding factor groups” are created by picking uniformly at 
random (with replacement) s (crowding group size) individuals 
per group from the population. Second, one individual from each 
group that is most similar to the offspring is identified. This gives 
Cf individuals that are candidates for replacement by virtue of 
their similarity to the offspring. The offspring will replace one of 
them. From this group of most similar candidates, we pick the one 
with the lowest fitness to die and be replaced by the offspring. 
The series winner’s is replaced by the newly-generated individual. 

The MNC-GA is an algorithm that (a) maintains stable 
subpopulations within different niches, (b) maintains diversity 
throughout the search, and (c) converges to different local optima. 
No prior knowledge of the search space is needed and no 
restrictions are imposed during selection and replacement thus 
allowing exploration of other areas of the search space while 
converging to the best solutions in the different niches. 

 

5. The Enhanced Evolutionary Tabu Search 
The general structure of EE-TS is based on RE-TS. Unless 

noted, EE-TS operates in the same way. Consult [1] for a detailed 
description of RE-TS. Here, we only describe the enhancements 
implemented in EE-TS. 

Figure 3 depicts the overall EE-TS process. Unique elements 
of the EE-TS include: (1) the generation of an initial population at 
the beginning of the algorithm and during the escape mechanism, 
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(2) the running of a tournament series and the processing 
associated with the result for each iteration, and (3) the running of 
a tournament series in order to choose a new solution during the 
escape mechanism. The main goal of the enhancements is to 
introduce an evolutionary mechanism that contributes to the 
balance between exploring and exploiting the search space. 

The original RE-TS implements a purely random mechanism 
for generating new solutions. In EE-TS, new solutions are 
generated using a heuristic operator. The EE-TS heuristic operator 
assigns facilities to locations by attempting to place facilities with 
high shipping costs into locations that are on average closer to 
other locations. Randomness is introduced into the heuristic 
operator in order to ensure that a variety of solutions are 
generated. A Restricted Candidate List (RCL) approach is used 
where some percentage of the best candidate assignments are 
eligible to be chosen as the next assignment. First, the unassigned 
location with the lowest average distance to the other locations is 
chosen. The RCL is then built by selecting the top 25% of 
unassigned facilities with the lowest total shipping costs. One of 
the facilities from the RCL is chosen at random and assigned to 
the location. This process repeats until all locations have been 
assigned a facility. 

 
Step 1: Generate initial Population P. 

Step 2: Set i and i* to best solution in P. 

Step 3: Set escape := checkForRepetitions( i ). 

Step 4: if escape = FALSE then 

evaluateNeighborhood(). 

move := chooseBestMove(). 

champion := runSeriesOfTournaments(). 

child := crossOver(i, champion). 

if fitness(child) < fitness(i, move) then 

    i := child. 

else 
    i := applyMove(i, move). 

Step 5: else 
champion := runSeriesOfTournaments(). 

i := crossOver(i, champion). 

resetTabuListAndSolutionHistory(); 

Step 6: If fitness(i) < fitness(i*) then set i* = i. 

Step 7. If a stopping condition is met then stop. Else go to Step 3. 

Figure 3: EE-TS Pseudo Code 
 

To complete the creation process, a greedy local search is 
performed on the new solution to find a local minimum. This 
minimum is used as the new solution. Local search usually 
involves the evaluation of a neighborhood followed by a 
transition into the most-fit neighbor. Instead of evaluating the 
entire neighborhood and choosing the best move, the greedy local 
search used in EE-TS begins evaluating the neighbors, but always 
accepts the first one found that has a better fitness than the current 
solution. Each time a better neighbor is found the current solution 
transitions to the neighbor and the search begins again. The search 

is complete when an entire neighborhood is evaluated and the 
current solution has a better fitness than any of its neighbors. 
Figure 4 provides the pseudo code for the greedy local search 
technique in EE-TS. 

By their nature, Tabu Search tends to have a limited amount 
of stochastic behavior. Some randomness does exist in the 
creation of initial solutions and in the size of the Tabu List for a 
Robust Tabu Search, but compared to many other Soft Computing 
techniques Tabu Search is a fairly predictable process. Some work 
has been done on introducing more randomness into Tabu Search 
[16]. The EE-TS increases the amount of stochastic behavior in 
the following manner: during each iteration of EE-TS, after a 
move is selected, a new solution is generated with some 
randomness. If this new solution has a worse fitness than that 
which would result from applying the selected move to the current 
solution, then the move is accepted and the Tabu List is updated 
in the usual manner defined by the RE-TS. If the new solution is 
better than the move, however, then the new solution is accepted 
and nothing is added to the Tabu List. The effect on the Tabu 
Search is similar to the Evolutionary Computing concept of 
mutation; a higher degree of randomness is introduced into the 
normal processing flow. In addition, the new solution contains 
characteristics of previously-visited good solutions, with the 
intent that these characteristics contribute to the exploration and 
exploitation of new, well-fit areas of the search space. 

 
Step 1: Set i := 0 

Step 2: Set j := i + 1 

Step 3: Set moveValue := cost_of_swap(location i, location j). 

Step 4: If moveValue > 0 then 

Swap facilities at locations i & j. 

 Go to step 1. 

Step 5: Set j := j + 1. 

Step 6. If j < N-1 then go to step 3. 

Step 7: Set i := i + 1. 

Step 8. If i < N-1 then go to step 2. 

Figure 4:  Greedy local search pseudo code. 
 
The mechanism by which these new stochastic moves are 

generated in the EE-TS is based on common Evolutionary 
Computing operations:  selection and recombination. Instead of 
generating a completely random (or greedy) solution for each 
iteration, the EE-TS recombines the current solution with another 
randomly-selected, well-fit solution. The resulting offspring 
fitness is compared with the selected best move from the current 
solution. Recombination is performed such that common traits are 
retained in the offspring—if both parents are well-fit it is likely 
that the common traits are desirable. The resulting offspring 
solution may be a good solution that is some distance away from 
the current solution, in a new area of the search space. A greedy 
local search is then performed on the offspring solution to 
transition it to a local minimum. If the new solution is better than 
the current move then it is accepted over the selected move. The 
algorithm in effect jumps to the new solution and continues 
searching from there. 
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Selection is performed in the EE-TS using a tournament 
technique similar to the WAMS operator described previously. A 
series of tournaments is run, and the winner of the series is the 
individual selected for use in the recombination operation along 
with the current solution. The winner of each discrete tournament 
is chosen based on similarity, measured in relation to the current 
solution. The winner of a tournament series is determined based 
on fitness. Unlike WAMS, which is used in conjunction with the 
crowding selection technique in order to assist with the fostering 
and management of multiple niches within a population, the EE-
TS technique is implemented with a complementary 
recombination approach to further enhance the Tabu Search’s 
ability to explore and exploit the search space. 

Similarity is based on the number of facilities assigned to the 
same location. If, for each location, the facility assigned in 
solution A does not match the facility assigned in solution B, the 
similarity score is incremented by one. Two identical solutions 
will have a similarity of zero. 

 

 
Figure 5: BAMD and BALD Techniques. 

 

Two distinct selection approaches were tried during the 
development of EE-TS and are depicted in Figure 5. They are:  
Best-Among-Most-Different (BAMD) and Best-Among-Least-
Different (BALD). The idea behind BAMD is that by selecting a 
solution for recombination that has little in common with the 
current solution, but that still has a good fitness, the algorithm 
will be lead into new and unexplored areas of the search space. 
For smaller-sized problems, where it is more likely that 
individuals will have many facility/location assignments in 
common, the BAMD technique would seem to be especially 
useful. It is important to note with this technique, however, that as 
problem size increases it becomes more likely that the most 
different individual will have no facility-location assignments in 
common with the current solution at all. If this should occur, it 
would negate the propagation of good characteristics to any 
offspring, since no common traits would exist in the parents. To 
counter such behavior, the BALD technique was developed for 

use with larger-sized problems, where it is more likely that the 
least different individual will have very few (if any) facility-
location assignments in common with the current solution. It can 
be observed that BALD is a niching technique similar to WAMS. 

The contestants in the individual tournaments are chosen 
randomly with replacement, from the current run’s population. 
This population consists of all previously-visited solutions for the 
current run of the EE-TS algorithm. Unlike the populations of 
most traditional Evolutionary Computing techniques, the EE-TS 
population does not maintain a constant size. Instead, it continues 
to grow during the course of a run. The population size decreases 
only when an escape occurs, at which time the population is 
cleared. 

Special attention must be paid to the early iterations of the 
EE-TS:  Since the tournaments are carried out with individuals 
from the population, and the population is made up of previously-
visited solutions, the population is not adequately-sized at the 
beginning of a run in order for a series of tournaments to be 
worthwhile. In order to hold a meaningful series of tournaments at 
this early stage, the EE-TS incorporates the idea of an initial 
population into its design. At the beginning of a run of the 
algorithm, before any Tabu Searching functionality is performed, 
a set of random solutions is generated using the greedy RCL 
technique described previously. The best solution in the initial 
population is used as the starting point of the run, the others are 
treated as previously-visited solutions and are available to take 
part in any of the tournaments held throughout the course of the 
run. Additionally, whenever an escape occurs and the list of 
previously-visited solutions is cleared, an initial population is 
generated before Tabu Searching resumes. 

In the interest of minimizing the amount of time spent on the 
recombination operation, it is implemented with a fairly simple 
approach:  any facility-location assignments that are found in both 
parents are passed on to the offspring. All remaining unassigned 
facility-location assignments in the child are chosen at random. 
The final step in this recombination strategy is a greedy local 
search on the new offspring.  

Including this recombination process at each iteration 
augments the way in which the Tabu Search explores and exploits 
the search space. If the two solutions being recombined are very 
similar, the offspring will be exploiting those characteristics. If 
the two solutions being recombined have little in common, the 
offspring will most likely be exploring different areas of the 
search space. Instead of only being aware of the neighborhood of 
the current solution, the EE-TS is able to consider transitioning to 
an out-of-neighborhood solution, but one which is derived from 
information learned over the course of the run. 

 

6. Results 
Several of the Enhanced Evolutionary Tabu Search’s features 

can be parameterized at runtime, and the settings for these 
variables could have a significant impact on the performance and 
behavior of the algorithm. Battiti and Tecchiolli have done a more 
than adequate job at describing the variables associated with 
elements of the Reactive Tabu Search, so this paper will focus 
exclusively on new parameters introduced with the EE-TS 
enhancements. All EE-TS runs have been performed with the 
default RE-TS configuration. 

The EE-TS exclusive variables are: Population Size, 
Tournament size, Tournament Series Size, and Selection Strategy. 
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A separate group of runs was performed for each of these 
parameters over a collection of five QAP problems from the 
Taillard set. Each problem increased in size by an increment of 
20, with the smallest problem being of size 20 and the largest of 
size 100. 

Tables 1 through 4 contain the results of the examination of 
the data collected during the parameter discovery test runs. Ten 
runs were performed for each variable value and problem 
combination. To determine which value was to be used in the 
final EE-TS configuration, comparisons between the average of 
the best fitness recorded for the ten runs were performed. In 
Tables 1 through 4, the variable value that performed best for 
each problem is labeled as Best. In the event that multiple values 
obtained the same best average fitness, the least processor-
intensive value was deemed the Best. In most of the tests, all of 
the results were very close. This is most likely attributable to two 
factors:  the fitness scores were all large numbers—in the 
hundred-thousands or millions—so even a small percentage 
difference could be a substantial gap, and the underlying RE-TS 
structure was not hindered in any way, so that even a poor EE-TS 
variable configuration would still find good solutions. 

 
Table 1: Comparison of population size as a function of the 

number of location and facilities (N). 

Pop Size Tai20a Tai40a Tai60a Tai80a Tai100a 

N + 0 % + 0.120% + 0.005% Best + 0.048% 

N / 2 + 0% + 0.170% Best + 0.005% + 0.019% 

N / 4 Best Best + 0.009% + 0.036% Best 
 

 
Table 2: Comparison of tournament size as a function of 

population size. 

Tournament 
Size 

Tai20a Tai40a Tai60a Tai80a Tai100a 

Pop Size + 0% Best + 0.074% + 0.079% + 0.142% 

Pop Size / 2 + 0% + 0.042% Best + 0.080% + 0.080% 

Pop Size / 4 Best + 0.055% + 0.016% Best Best 
 

The following values were decided upon for use as the final 
configuration of the EE-TS:  The population size was set to one 

fourth of the problem size; the size of each tournament was set to 
one fourth of the population size, with a minimum size of two; 
each tournament series was made up of five tournaments; and the 
BAMD strategy was used as the selection strategy. In general, the 
value which lead to the most Best’s was selected for use. With the 
tournament series size variable, five was chosen over seven in 
order to decrease execution time. The difficulty in choosing the 
variable values in this way is that it is unlikely that any of the 
variables impact the algorithm discretely. Instead, the combined 
configuration of the variables must be observed to discover the 
ideal values. Due to time constraints, such a thorough 
investigation was not performed, but would be beneficial to future 
development of the EE-TS. 

 
Table 4: Comparison of discrete values for tournament series 

size. 

Series 
Size 

Tai20a Tai40a Tai60a Tai80a Tai100a 

1 + 0.061% + 0.009% + 0.072% Best + 0.132% 

3 + 0.030% + 0.072% + 0.106% + 0.044% + 0.063% 

5 Best + 0.060% Best + 0.023% + 0.043% 

7 + 0.061% Best + 0.084% + 0.031% Best 
 

 
Table 5: Comparison of selection strategies. 

Selection 
Strategy 

Tai20a Tai40a Tai60a Tai80a Tai100a 

BAMD Best Best Best Best Best 

BALD + 0.263% + 0.667% + 0.804% + 0.941% +0 .999% 
 
The selection strategy results in Table 4 show that the 

BAMD approach outperformed the BALD approach in every case, 
especially in the larger problems where it was originally theorized 
that BALD would help to improve performance. These results 
deserve further study, but one explanation for the observed 
behavior is that with the larger problems even the least distant 
solutions often had no assignments in common with the current 
solution and that the BALD strategy therefore had no advantage 
over BAMD. With the smaller problems, it was assumed that 
BAMD would outperform BALD. 

 
Table 3: Comparison of average iterations before convergence to best solution for EE-TS, RE-TS, S-TS, and RO-TS 

EE-TS Prob. Max. Iter. 
EE-TS / 
Others 

Avg. Iterations Results 
RE-TS S-TS RO-TS 

Tai9a 100K / 100K 102.5 (34.2) 30/30 67.5 (12.0) 56.2 (8.1) 31.7 

Tai10a 100K / 100K 96.2 (15.1) 30/30 256.7 (34.0) 161.3 (20.7) 137.1 

Tai12a 100K / 100K 114.5 (21.7) 30/30 282.3 (51.4) 477.0 (95.7) 210.7 

Tai15a 100K / 100K 1084.8 (205.4) 30/30 1780.3 (319.0) 3642.2 (308.2) 2168.0 

Tai17a 100K / 100K 1196.2 (218.0) 30/30 4133.9 (646.8) 7364.2 (817.4) 5020.4 

Tai20a 100K / 500K 14970.8 (2502.5) 30/30 37593.2 (6012.5) 25092.9 (6572.2) 34279 

Tai25a 100K / 1M 19322.3 (2922.7) 30/30 38989.7 (6236.1) 20483.9 (3575.0) 80280.4 

Tai30a 100K / 2M 31905.3 (5001.4) 24/30 68178.2 (11370.3) 48919.2 (9055.6) 146315.7 

Tai35a 100K / 4M 48457.6 (5690.9) 10/30 281334.0 (48543.5) 146276.2 (47419.7) 448514.5 
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A series of runs was performed with the EE-TS based on the 
published results of various other metaheuristic search techniques. 
Table 5 shows comparisons between the EE-TS and several other 
successful Tabu Searches over a set of problems from the Taillard 
set ranging in sizes from 9 to 30. Thirty runs were performed on 
each problem for each approach. The average number of iterations 
required to find the best solution is shown along with the standard 
deviations in parentheses. The RE-TS, S-TS, and RO-TS data 
contained in this table was gathered from Battiti and Tecchiolli 
[1]. For all but the first problem, the EE-TS required fewer 
iterations to find the optimal solution. For all runs of the EE-TS a 
maximum of 100,000 iterations was allowed. For the four largest 
problems, this number differed from that of the other Tabu Search 
techniques, which were set to run for a much higher number of 
iterations. For the two largest problems, the EE-TS failed to find 
the best known solution for some of the 30 runs performed on 
each problem. Allowing for a greater number of iterations may 
have improved this area of performance. 

In all cases, the runtime environment for the RE-TS, S-TS, 
and RO-TS tests was either not known or could not be duplicated, 
so time comparisons are not possible. Still, it should be noted that 
the EE-TS adds additional processing to the RE-TS, including 
local searches for each iteration. This undoubtedly has some 
impact on execution time, and deserves further investigation. 
Also, no time was permitted for optimization purposes and 
potential improvements in this area should be reviewed as well. 

 
Table 6: EE-TS statistical averages. 

Prob. Results Evol.Solution 
Accepts 

Move Accepts Escapes 

Nug15 30/30 29.7 (5.0) 65.7 (9.7) 1.0 (0.2) 

Nug30 30/30 171.0 (35.4) 1846.2 (461.3) 8.5 (1.6) 

 

Sko49 23/30 487.6 (63.7) 50354.4 (6534.2) 60.0 (7.6) 

Sko56 30/30 213.0 (37.8) 21008.1 (3761.8) 24.8 (4.3) 

Sko64 29/30 206.1 (40.5) 22645.3 (4404.8) 27.6 (5.1) 

 

Tai9a 30/30 86.0 (33.1) 15.7 (3.1) 0.8 (0.2) 

Tai10a 30/30 54.0 (12.2) 41.1 (5.7) 1.1 (0.2) 

Tai12a 30/30 66.3 (14.9) 46.6 (7.7) 1.7 (0.3) 

Tai15a 30/30 214.3 (37.2) 864.0 (167.9) 6.5 (1.1) 

Tai17a 30/30 220.0 (36.6) 969.0 (181.9) 7.3 (1.2) 

Tai20a 30/30 1563.0 (264.9) 13359.3 (2230.7) 48.4 (8.2) 

Tai25a 30/30 1217.2 (187.9) 18069.3 (2730.2) 35.8 (5.7) 

Tai30a 24/30 2667.0 (376.3) 43335.4 (6380.0) 103.7 (14.6) 

Tai35a 10/30 1753.5 (133.3) 78251.5 (5891.0) 88.3 (6.8) 
 
In addition to the Taillard set problems listed in Table 5, 

several problems from the Nugent, Vollman, and Ruml and 
Skorin-Kapov sets were used to conduct runs as well. Table 6 
shows some of the statistics collected for tests consisting of 30 
runs per problem, including the number of successful runs, the 
average number of evolutionary solutions accepted during each 
run, the average number of normal moves accepted for each run, 

and the average number of escapes performed for each run. 
Numbers in parentheses are standard deviations. Of the fourteen 
problems, only four tests failed to find the best known solution for 
all 30 runs. Interestingly, all runs for the Nug30 problem 
discovered the best known result, a feat not duplicated by any of 
the approaches examined in Merz and Freisleben’s comparison of 
various metaheuristic search techniques [20]. Also interesting to 
note is that for problems with sizes less than 15, the number of 
evolutionary solutions accepted was greater than the number of 
normal moves accepted. With these smaller problems, it is likely 
that the recombination technique—which included the greedy 
local search—was very successful at quickly finding very good 
minima, much more so than the un-enhanced Tabu Search 
elements of the EE-TS. 

A final observation on Table 6 is that the average number of 
escapes is fairly small for each of the problems. This implies that 
few solutions were visited multiple times. Also, for the larger 
problems the average number of normal move acceptances is far 
greater than the number of evolutionary move acceptances, which 
indicates that the pure Tabu Search features of the EE-TS had 
more success at identifying better-fit solutions within the search 
space. One of the strengths of the EE-TS design is that it contains 
more than one mechanism by which to manage the exploration 
and exploitation of the search space—one inherited from the RE-
TS’s dynamic Tabu List length and escape mechanism and one 
gained from the generation of new solutions via recombination—
and that these mechanisms have the potential to complement or 
compensate for each other over the course of any given run. The 
recombination operation gives the algorithm the opportunity to 
consider solutions that may be outside of the neighborhood of the 
current iteration, but which demonstrate good characteristics 
based on what has previously been seen over the course of a run. 
When the recombination technique is repeatedly successful at 
discovering good solutions, its results can dominate the flow of 
the algorithm. When it is not, the Tabu Search will continue to 
explore and exploit the search space in its own way. 

 
Table 7: Results for larger problem sizes with number of 

iterations of 100K. 
Prob. Results Avg. Best Distance 

from 
Known 

Best 

Avg. Iterations 

Tai40a 0/30 3154048.1 (670.3) + 0.4675% 53528.7 (5200.5) 

Tai60a 0/10 7272281.4 (2737.0) + 0.9203% 69505.6 (8468.8) 

Tai80a 0/10 13637294.8 (4203.7) + 0.7486% 50067.4 (6042.1) 

Tai100a 0/10 21263584.4 (6303.6) + 0.7486% 62542.5 (8754.1) 
 

Finally, a series of runs was performed on a collection of 
larger problems. Due to the amount of processing time required to 
run these tests, only 10 runs per problem were performed in most 
cases. In all cases, the maximum number of iterations allowed was 
100,000. Generally, a much greater number of iterations 
(sometimes millions) is needed by other established metaheuristic 
search techniques to discover the best known solutions. Not 
surprisingly, none of the tests described in Table 7 found the best 
known solution to the respective problems. What is shown, 
however, is that for all of the runs the average best found 
solutions came within less than 1% of the best known solutions. 
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The best known solution fitnesses were taken from the QAPLIB 
[5]. 

7. Conclusions and Recommendations 
This paper has described a new metaheuristic technique 

based on elements of Tabu Searching and Evolutionary 
Computing. The Quadratic Assignment problem was used during 
development of the new algorithm for tuning purposes, and also 
to compare its performance with established searching techniques. 
The Enhanced Evolutionary Tabu Search (EE-TS) augments the 
exploration and exploitation of a search space inherent in the RE-
TS by introducing selection and recombination operations that use 
information about good solutions discovered during a run of the 
algorithm to influence the search. Through demonstration, it was 
shown that the Enhanced Evolutionary Tabu Search was able to 
reach an optimum value—the best known value, in most cases—
of a problem in fewer iterations than other well-known 
techniques. While no solutions have yet been found with the EE-
TS that are better than any previously known solutions, the fact 
that fewer iterations were required for successful searches implies 
that in some scenarios, the EE-TS may be a better choice than the 
established techniques. 

Based on these results, further investigation is deserved of 
the EE-TS algorithm. Specifically, a more thorough examination 
of the impact of the configuration variables and their relationships 
could lead to better performance. Also, promising initial tests 
require longer runs (more iterations) be attempted on larger 
problems to observe comparable performances with other 
approaches. Additional areas that would benefit from more 
research include the effects of the BALD technique on larger 
problem sizes, the impact of a randomly-generated escape 
solution, the evaluation and possible improvement of execution 
time, and the development of optimization strategies for the 
algorithm’s source code. 
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